TECHNICAL/MATERIAL REFERENCE

www.chestertonrotating.com

SEAL CHAMBER PRESSURE ESTIMATION

Seal chamber pressure must be known before the proper seal and flush plan can be selected. Seal chamber pressure can vary from pump design, flow rate, and fluid being pumped. Suction and discharge pressures are required to perform these calculations. Often, pump specification sheets can be old and outdated, i.e., design, operating points may have changed due to a change in process demands. It is, for this reason, that suction and discharge pressures should be physically measured with pressure gages.

Single Stage, Single Suction, Overhung Process Pumps

Overhung centrifugal pumps are the most common process pumps in the industry. The seal chamber is located behind the pump impeller. Seal chamber pressure can vary based on pump design. The following equations are based on closed throat design seal chambers. Pump designs include wear rings and balance holes in the impeller to reduce thrust load on the bearings. The seal chamber pressure is a function of wear ring clearance as well as size and location of the balance holes.

Quick estimate	Psb = Ps + .25(Pd - Ps)
Enclosed or semi-enclosed impellers with wear ring design and balance holes	Psb = Ps + .05(Pd - Ps)
Open impeller design with centrifugal pump-out vanes or repeller (no balance holes)	Psb = Ps + *D(Pd - Ps)

*D = .3 if the impeller is at minimum diameter and .1 if the impeller is at maximum diameter.

Single Stage, Double Suction Pumps

The single stage, double suction impeller is placed between bearings while the seal chambers are located adjacent to the suction eyes of the impeller. The stuffing box pressure is equal to the suction pressure.

Multi-Stage Pumps

Multi-stage pumps inherently have higher discharge pressures, but low-to-medium stuffing box pressures due to impeller arrangement, casing design, balance drums and the use of balance lines. These multi-stage pumps can be mounted horizontally or vertically.

SHAFT SPEED CONVERSION CHART

Two Stage Horizontal Pumps Impeller arrangement can have two configurations: 1.) Back to Back In this arrangement, the seal chambers are located adjacent to the suction eye of the impeller. One chamber will see suction pressure and the other will see first stage discharge pressure. 2.) Eye to Eye	$Psb_1 = Ps$ $Psb_2 = Ps + .5(Pd - Ps)$
In this arrangement the seal chambers are located adjacent to the backside of the impeller. One chamber will see the discharge of the first stage and the other will see pump discharge pressure (second stage discharge).	$Psb_1 = Ps + .5(Pd - Ps)$ $Psb_2 = Pd$
Multi-Stage Horizontal Pumps Multi-stage boiler feed pumps are used to develop high pressures, but the seal chamber is not necessarily at a high pressure. These pumps have a low pressure chamber (suction pressure) and a higher-pressure chamber (pressure between suction and discharge).	$Psb_1 = Ps$
Typically, a balance line is used to reduce pressure in the higher pressure seal chamber. Provided pump tolerances are in check, the higher-pressure seal chamber is as follows:	Psb ₂ = Ps + 5 bar g(75 psig)
Note: If pump tolerances are not in check and, in the absence of a balance line, the higher-pressure chamber will be a pressure between suction and discharge pressure.	$Psb_2 = Ps + .5(Pd - Ps)$
Multi-Stage Vertical Pumps (Can or Turbine) In these pumps the seal chamber is located at the discharge elbow. Therefore the seal chamber pressure would see discharge pressure.	Psb = Pd
Note: The installation of a bleed-off line can reduce seal chamber pressure, provided pump tolerances are in check.	$Psb_2 = Ps + 5 bar g(75 psig)$

METRIC FORMULAS:

Head (m) = $\frac{\text{Pressure (bar) x 9.8}}{\text{SG}} = \frac{\text{mm Hg. x 0.0014}}{\text{SG}}$
Pressure (bar) = $\frac{\text{Head (m) x SG}}{9.8}$
Mm of Mercury = $\frac{\text{Head (m) x SG}}{0.0014}$
Power (kW) = $\frac{Q(I/min) x \text{Head}(m) x \text{SG}}{affectory w G120}$

efficiency x 6128

IMPERIAL FORMULAS:

Head (ft.) = $\frac{\text{psi x } 2.31}{\text{sp. gr.}}$ = $\frac{\text{ln. Hg.}}{\text{sp. gr. x }.88}$ BHP (centrifugal) = $\frac{\text{GPM x head (ft.) x sp. gr.}}{3960 \text{ x pump eff.}}$ PSI = $\frac{\text{head (ft.) x sp. gr.}}{2.31}$ = .49 x ln. Hg. BHP (Positive Disp.) = $\frac{\text{GPM x psi}}{1715 \text{ x pump eff.}}$

UNITS OF MEASURE

Mariner's Measure
6 Feet = 1 Fathom
120 Fathoms = 1 Cable Length (U.S.N.)
8.439 Cable Lengths = 1 Nautical Mile
6076.12 Ft. = 1 Nautical Mile
1 Nautical Mile = 1.15 Statute Mile (International)

Inch System Conversion

Inches	х	0.0254	=	Meters
Feet	х	0.305	=	Meters
Yards	х	0.914	=	Meters
Miles	х	1609.	=	Meters
Miles	х	1.609	=	Kilometers
Millimeters	х	0.03937	=	Inches
Centimeters	х	0.3937	=	Inches
Meters	х	39.37	=	Inches
Meters	х	3.281	=	Feet
Meters	х	1.094	=	Yards
Kilometers	х	0.621	=	Miles
Sq. Centimeters	х	0.155	=	Square Inches
Sq. Meters	х	10.764	=	Square Feet
Sq. Meters	х	1.186	=	Square Yards
Cubic Centimeters	х	0.061	=	Cubic Inches
Cubic Inches	х	16.2	=	Cubic Centimeters
Liters	х	0.2642	=	Gallons
Gallons	х	3.78	=	Liters
Cubic Meters	х	1.308	=	Cubic Yards
Cubic Yards	х	0.765	=	Cubic Meters

Metric System Prefixes

Mega = 1,000,000	Deci = 0.1			ra (T) = 10 ¹²				
Kilo = 1,000	Centi = 0.01			Giga (G) = 10 ⁹				
Hecto = 100	Milli = 0.001			no (N) = 10 ⁻⁹				
Deka = 10	Micro = 0.000001			$o(P) = 10^{-12}$				
Length								
1 centimeter	=	0.3937 inch	=	0.0328 foot				
1 meter	=	39.37 inches	=	1.0936 yards				
1 kilometer	=	0.62137 mile	=	3280 feet				
1 inch	=	2.54 centimeters						
1 foot	=	0.3048 meter						
1 mil	=	0.001 inch						

Square Measure

1 sq. cm.	= 0.1550 sq. in.		
1 sq. meter	= 1.196 sq. yd.	=	10.764 sq. ft.
1 sq. kilometer	= 0.386 sq. mile		
1 sq. inch	= 6.452 sq. cm.		
1 sq. foot	= 929.03 sq. cm.	=	0.092903 sq. meter
1 sq. yard	= 0.8361 sq. meter		
1 sq. mile	= 2.59 sq. kilometers		
1 circular mil	= 0.7854 sq. mil		
1 sq. inch	= 1,000,000 sq. mils		

Cubic Measure

1 cu. centimeter = 0.061 cu. inch 1 cu. in. = 16.39 cu cm. 1 cu. meter = 1.308 cu. yards = 35.316 cu. feet 1 gallon (U.S.) = 231 cubic inches1 cu. ft. = 7.48 gallons 1 liter = 1,000 cu. centimeters

Time

1 day = 86,400 seconds 1 year = 8,760 hours (approx.)

Velocity

1 ft./sec. = 0.3048 meter/sec.	1 meter/sec. = 3.281 ft./sec.
1 ft./min. = 0.00508 meter/sec.	1 meter/sec. = 196.9 ft./min.
1 mile/hr. = 0.4470 meter/sec.	1 meter/sec. = 2.237 mi./hr.
1 kilometer/hr. = 0.2778 meter/sec.	1 meter/sec. = 3.60 km/hr.

Acceleration

1 ft./sec./sec.	=	0.3048 meter/sec./sec.
1 mile/hr./sec.	=	0.4470 meter/sec./sec.
1 kilometer/hr./sec.	=	0.2778 meter/sec./sec.
Standard gravitation	=	9.806 meters/sec./sec.
Standard gravitation	=	980.6 cm./sec./sec.
Standard gravitation	=	32.2 ft./sec./sec.

Mass

111033			
1 slug	=	32.2 pounds mass =	14.606 kilograms
1 pound mass	=	453.6 grams	

Force

1 pound force = 1 slug x 1 foot sec./sec. x 1 centimeter/sec./sec. 1 dvne = 1 gram 1 newton = 1 kilogram x meter/sec./sec. 1 pound force = 4.452 newtons 1 newton = 100,000 dynes = 0.224 pound force 1 gram force = 980.6 dynes

Pressure

1 atmosphere = 14.69 pounds/sq. inch = 29.92 in. of Hg. = 76 cm of Hg. = 33.9 ft. of water 1 in Hg. =0.491 pounds/sq. inch Water pressure pounds/sq. inch = head in ft. x 0.434

Torque

Torque is the product of force and perpendicular distance. 1 lb.-ft. = 1.356 newton-meter = 1.356 joule/radian 1 lb.-ft. = 1.356×10^7 dynes-centimeter 1 lb.-ft. = 1.383 x 10⁴ grams-centimeter 1 lb.-ft. = 192 ounce-inches

Work and Energy - Mechanical

1 erg = 1 dyne x 1 centimeter 1 joule = 1 newton x 1 meter = 10^5 dynes x 10^2 cm = 10^7 ergs 1 ft.-lb. = 1 pound force x 1 foot = 1.356 joules

Work and Energy - Heat Equivalent

1 Btu raises 1 pound of water 1°F 1 gram calorie raises 1 gram of water 1°C 1 Btu = 252 gram calories = 778.3 ft.-lb. = 1054.8 joules 1 gram calorie = 0.003964 Btu = 4.184 joules 1 horsepower hour = 2545 Btu

Work and Energy - Electrical Equivalent

1 joule = 1 watt x 1 second = 1 amp (dc) x 1 volt (dc) x 1 sec. W (joules) = 1/2 L (henries) x 1 (amperes)² W (joules) = 1/2 C (farads) x E (volts)² 1 kilowatt hour = 3,600,000 joules

Power

1 watt = 1 joule/sec. 1 horsepower = 550 ft. lb./sec. = 746 watts 1 watt = 3.413 Btu/hr = 0.239 gram calorie/sec. P watts = R (ohms) x 1 (amperes)² P watts = $\frac{E (volts)^2}{R (ohms)}$

Anales

1 circle = 2π radians = 360 degrees 1 radian = 57.3 degrees 1 degree = 0.01745 radians

Geometric Figures

Circle, area of $= D^2 \times 0.7854 = \pi^2$ r = radius Circle, circumference of $= \pi D$ or $2\pi r$ Sphere, area of $= \pi D^2 = 4\pi r^2$ D = diameter Sphere, volume of $= D^3 \times 0.5236 = 4/3 \pi r^3$ Triangle, area of = 1/2 altitude x base Cone, volume of = area of base x 1/3 altitude Trapezoid, area of = 1/2 (sum of parallel sides) x altitude Pyramid, volume of = area of base x 1/3 altitude

Miscellaneous Constants

e = 2.71828 $\pi = 3.14159$ $Log_{e} X = 2.30259 log_{10} X$ Electronic charge = 4.5×10^{-10} e.s.u. = 1.60×10^{-20} e.m.u. Mass units = $1.07 \times 10^{-3} \times \text{Mev} = 6.71 \times 10^{2} \text{ ergs}$ Speed of light = 3×10^{8} meters/second Speed of sound = (in air at sea level) = 1100 ft/second

TEMPERATURE CONVERSION TABLES

NOT	E-The	e numbers ir	n BOL	D FAC	CE refer	to the tem	perati	ure eith	er in degre	es Ce	ntigrad	de or Fahr	enheit	whic	h is desired to	conv	ert in	to the othe	r scale	2.
°C		°F	°C		°F	°C		°F	°C		°F	°C		°F	°C		°F	°C		°F
-17.8	0	32.0	5.6	42	107.6	28.9	84	183.2	171	340	644	404	760	1400	638	1180	2156	871	1600) 2912
-17.2	1	33.8	6.1	43	109.4	29.4	85	185.0	177	350	662	410	770	1418	643	1190	2174	877	1610	2930
-16.7	2	35.6	6.7	44	111.2	30.0	86	186.8	182	360	680	416	780	1436	649	1200	2192	882	1620	2948
-16.1	3	37.4	7.2	45	113.0	30.6	87	188.6	188	370	698	421	790	1454	654	1210	2210	888	1630) 2966
-15.6	4	39.2	7.8	46	114.8	31.1	88	190.4	193	380	716	427	800	1472	660	1220	2228	893	1640	2984
-15.0	5	41.0	8.3	47	116.6	31.7	89	192.2	199	390	734	432	810	1490	666	1230	2246	899	1650	3002
-14.4	6	42.8	8.9	48	118.4	32.2	90	194.0	204	400	752	438	820	1508	671	1240	2264	904	1660	3020
-13.9	7	44.6	9.4	49	120.2	32.8	91	195.8	210	410	770	443	830	1526	677	1250	2282	910	1670	3038
-13.3	8	46.4	10.0	50	122.0	33.3	92	197.6	216	420	788	449	840	1544	682	1260	2300	916	1680	3056
-12.8	9	48.2	10.6	51	123.8	33.9	93	199.4	221	430	806	454	850	1562	688	1270	2318	921	1690	3074
-12.2	10	50.0	11.1	52	125.6	34.4	94	201.2	227	440	824	460	860	1580	692	1280	2336	927	1700	3092
-11.7	11	51.8	11.7	53	127.4	35.0	95	203.0	232	450	842	466	870	1598	699	1290	2354	932	1710	3110
-11.1	12	53.6	12.2	54	129.2	35.6	96	204.8	238	460	860	471	880	1616	704	1300	2372	938	1720	3128
-10.6	13	55.4	12.8	55	131.0	36.1	97	206.6	243	470	878	477	890	1634	710	1310	2390	943	1730	3146
-10.0	14	57.2	13.3	56	132.8	36.7	98	208.4	249	480	896	482	900	1652	716	1320	2408	949	1740	3164
-9.4	15	59.0	13.9	57	134.6	37.2	99	210.2	254	480	914	488	910	1670	721	1330	2426	954	1750	3182
-8.9	16	60.8	14.4	58	136.4	37.8	100	212.0	260	500	932	493	920	1686	727	1340	2444	960	1760	3200
-8.3	17	62.6	15.0	59	138.2				266	510	950	499	930	1706	732	1350	2462	966	1770	3218
-7.8	18	64.4	15.6	60	140.0	43.3	110	230	271	520	968	504	940	1724	738	1360	2480	971	1780	3236
-7.2	19	66.2	16.1	61	141.8	48.9	120	248	277	530	986	510	950	1742	743	1370	2498	977	1790	3254
-6.7	20	68.0	16.7	62	143.6	54.4	130	266	282	540	1004	516	960	1760	749	1380	2516	982	1800	3272
-6.1	21	69.8	17.2	63	145.4	60.0	140	284	288	550	1022	521	970	1778	754	1390	2534	988	1810	3290
-5.6	22	71.6	17.8	64	147.2	65.6	150	302	293	560	1040	527	980	1796	760	1400	2552	993	1820	3308
-5.0	23	73.4	18.3	65	149.9	71.1	160	320	299	570	1058	532	990	1814	765	1410	2570	999	1830	3326
-4.4	24	75.2	18.9	66	150.8	76.7	170	338	304	580	1076	538	1000	1832	771	1420	2588	1004	1840	3344
-3.9	25	77.0	19.4	67	152.6	82.2	180	356	310	590	1094	543	1010	1850	777	1430	2606	1010	1850	3362
-3.3	26	78.8	20.0	68	154.4	87.8	190	374	316	600	1112	549	1020	1868	782	1440	2624	1016	1860	3380
-2.8	27	80.6	20.6	69	156.2	93.3	200	392	321	610	1130	554	1030	1886	788	1450	2642	102	1870	3398
-2.2	28	82.4	21.1	70	158.0	98.9	210	410	327	620	1148	560	1040	1904	793	1460	2660	102	1880	3416
-1.7	29	84.2	21.7	71	159.8	100	212	413	332	630	1166	566	1050	1922	799	1470	2678	1032	1890	3434
-1.1	30	86.0	22.2	72	161.6	104	220	428	338	640	1184	571	1060	1940	804	1480	2696	1038	1900	3452
6	31	87.8	22.8	73	163.4	110	230	446	343	650	1202	577	1070	1958	810	1490	2714	1043	1910	3470
0	32	89.6	23.3	74	165.2	116	240	464	349	660	1220	582	1080	1976	816	1500	2732	1049	1920	3488
.6	33	91.4	23.9	75	167.0	121	250	482	354	670	1238	588	1090	1994	821	1510	2750	1054	1930	3506
1.1	34	93.2	24.4	76	168.8	127	260	500	360	680	1256	593	1100	2012	827	1520	2768	1060	1940	3524
1.7	35	95.0	25.0	77	170.6	132	270	518	366	690	1274	599	1110	2030	832	1530	2786	1060	1950	3542
2.2	36	96.8	25.6	78	172.4	138	280	536	371	700	1292	604	1120	2048	838	1540	2804	107	1960	3560
2.8	37	98.6	26.1	79	174.2	143	290	554	377	710	1310	610	1130	2066	843	1550	2822	107	1970	3578
3.3	38	100.4	26.7	80	176.0	149	300	572	382	720	1328	616	1140	2084	849	1560	2840	1062	1980	3596
3.9	39	102.2	27.2	81	177.8	154	310	590	388	730	1346	621	1150	2102	854	1570	2856	1088	1990) 3614
4.4	40	104.0	27.8	82	179.6	160	320	608	393	740	1364	627	1160	2120	860	1580	2876	1093	2000) 3632
5.0	41	105.8	28.3	83	181.4	166	330	626	399	750	1382	632	1170	2138	866	1590	2894			

OTHER HANDY FORMULAS	COMMON FRACTIONS REDUCED TO DECIMALS	
Power Transmission by Shaft HP = [Torque (in lb-ft) x rpm] ÷ 5250	8ths 16ths 32nds 64ths Decimal8ths 16ths 32nds 64ths Decim	nal
Power to Drive Pumps HP – Gal. per min. x total head (inc. friction)	1 .015625 33 .515 1 2 .03125 17 34 .531 3 .046875 35 .546	625 25 875
3,960 x eff. of pump	<u>1 2 4 .0625</u> <u>9 18 36 .562</u>	5
Where: Approx.friction head (ft.) = pipe length (ft.) x [velocity of flow (fps)] ² x 0.02 $5267 \times diameter (in)$	5 .078125 37 .578 3 6 .09375 19 38 .593 7 .109375 39 .609	125 75 375
Eff. = Approximately 0.50 to 0.85	<u>1 2 4 8 .125</u> <u>9 .140625</u> <u>5 10 20 40 .625</u> <u>41 .640</u>	625
Formula for Problems Involving Rotating Masses	<u>5 10 .15625</u> <u>11 .171875</u> <u>21 42 .656</u> 43 .671	<u>25</u> 875
Time required to change speed of rotating mass from N ₁ to N ₂ rpm. $t = \frac{(Wr^2) (N_2 - N_1)}{M_2 - M_1}$ Sec.	3 6 12 .1875 11 22 44 .687 13 .203125 45 .703	5 125
(308) (torque lb-ft) Where $(Wr^2) = Flywheel effect.$	7 14 .21875 23 46 .718 15 .234375 47 .734	75 375
Kinetic energy of rotating mass.	<u>2 4 8 16 .25</u> <u>17 .265625</u> <u>6 12 24 48 .75</u> <u>49 .765</u>	625
K.E. = $\frac{(WK^2)(rpm^2)}{5870}$ ft-lbs = $\frac{(WK^2)(rpm^2)}{2.22 \times 10^6}$ hp. sec.	<u>9 18 .28125</u> <u>19 .296875</u> <u>51 .796</u>	25 875
$S_{225} \times 10$ Where W = Weight (lbs.)	<u>5 10 20 3125</u> <u>13 26 52 812</u>	5
K = Radius of gyration (ft.)	<u> </u>	<u>125</u> 75
Induction motor acceleration loss.	23 .359375 55 .859	385
Loss $\simeq \left(1 + \frac{n_1}{R_2}\right) \frac{\sqrt{n_1}}{3.23 \times 10^6}$ hp. sec.	<u> </u>	625

Loss $\cong \left(1 + \frac{R_1}{R_2}\right) \frac{WK^2 (N_2 - N_1)^2}{3.23 \times 10^6}$ hp. sec.

Where R_1 and r_2 = stator and rotor resistances. Stored energy constant. H = ----— Kw. sec. per kva.

kva

Transfer of WK₂ through a gear.

 $WK_1^2 = WK_2^2 \left(\frac{N_2}{N_1}\right)^2$

13 26

15

7 14 28

4 8 16 32

27

29 30

31

.40625

.4375

.421875

.453125

.484375

.46875

.5

CHESTERTON bal Solutions, Local Service

29 58

31

15 30 60

16 32

8

59

61

62

63

64

.90625

.921875

.953125

.96875 .934375

1.00000

.9375

MATERIAL REFERENCE

Operating Limits of Elastomers

Key to Seal Materials EN12756 Component Chesterton Description В CB Carbon Graphite, Resin Impregnated Faces SSC Silicon Carbide, Sintered Pressureless Q_1 RSC Silicon Carbide, Reaction Bonded Q_2 TC Tungsten Carbide, Ni-Binder U2 CR Aluminum Oxide, 99.5% v Metals 316 G CrNiMo steel (1.4401) 20 Cb3 (2.4660) Alloy-20 M₃ Ti T₂ Titanium (3.7035) HC Hastelloy® C-276 (2.4819) M_5 HR M₁ Hastelloy® B2 (2.4617) Monel® Monel® Alloy K500 (2.4375) M_4 Elastomers FKM v Fluorocarbon FPDM Е **Ethylene Propylene** FEPM Х Tetrafluoroethylene-Propylene FFKM κ Perfluoroelastomer C550 K₁ ChemLast 550™ C250 ChemLast 250™ K2

* Consult Chesterton Engineering on lowerwrature limits

Chemraz[®] is a registered trademark of Greene, Tweed & Company. Elgiloy[™] is a trademark of Elgiloy Ltd. Partnership. Grafoil[®] is a registered trademark of Graftech International Holdings Inc. Hastelloy[®] is a registered trademark of Haynes International, Inc. Inconel[®] is a registered trademark of Special Metals Corporation. Kalrez[®] is a registered trademark of DuPont Performance Elastomers. Monel[®] is a registered trademark of Special Metals Corporation. SpiralTrac[®] is a registered trademark of Enviroseal Engineering Products Ltd. Sulzer[™] is a trademark of Sulzer Pumps Ltd.

Sulzer[™] is in no way associated or affiliated with A.W. Chesterton Company. Any reference to Sulzer pumps is intended solely to identify products of this other manufacturer for which A.W. Chesterton Company designed its DirectFit[™] seals to be compatible.

180[™], 280[™], 155[™], 255[™], 442[™], 891[™], 156[™], 225[™], ChemLast[™], DirectFit[™], Flow Guardian[™], IntelliFlow[™], Self-Centering Lock Ring[™], Unified Seal Face Alignment[™] are trademarks of A.W. Chesterton Company.

All statements in this catalog pertaining to pressure, chemical compatibility, temperature, and service ratings are based on general service experience. Because of the wide variety of applications of our products, the broad range of products available, and the wide range of equipment conditions encountered, together with the unpredictable human factors involved in the installation of these products by the ultimate user, you should not follow recommendations shown without specific prior service experience or consultation with an authorized Chesterton representative.

Specific data on materials, construction methods, installation, and troubleshooting procedures are subject to change without notice.

Performance is closely associated with the process operating conditions and equipment conditions. Technical data reflects results of laboratory tests and is intended to indicate general characteristics only. A.W. CHESTERTON COMPANY DISCLAIMS ALL WARRANTIES EXPRESSED, OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE. LIABILITY, IF ANY, IS LIMITED TO PRODUCT REPLACEMENT ONLY.

